

Document Tracking Number 02JAX0125

June 28, 2002

Project Number N2872

Commander, Southern Division Naval Facilities Engineering Command ATTN: Mr. Wayne Hansel (Code ES24) 2155 Eagle Drive North Charleston, South Carolina 29406

Reference:

CLEAN Contract Number N62467-94-D-0888

Contract Task Order (CTO) Number 0192

Subject:

Site Screening Letter Report Petroleum Contaminated Area 19

Naval Air Station Jacksonville, Jacksonville, Florida

Dear Mr. Hansel:

Tetra Tech NUS, Inc. (TtNUS) is pleased to submit this Site Screening Letter Report for Petroleum Contaminated Area (PCA) 19. This Site Screening Letter Report was prepared for the United States Navy (Navy) Southern Division, Naval Facilities Engineering Command (SOUTHNAVFACENGCOM) under Contract Task Order (CTO) 0192, for the Comprehensive Long-term Environmental Action Navy (CLEAN) Contract Number N62467-94-D0888. The objective of the Site Screening Letter Report is to document results of the field screening activities for soil and groundwater contamination. The field screening activities were performed in accordance with the Work Plan for Site Screening at Various Petroleum Sites dated August 2001.

Background Information

PCA 19 is the former location of underground storage tank (UST) Number 127E (Figure 1). In 1941, UST Number 127E was installed approximately 5 feet (ft) east of Building 127E (Figure 2). Building 127E is located on the grounds of an active potable water producing plant for the Navy. The steel 500-gallon UST was used to store diesel fuel for an emergency generator. The last date in which product was stored in the UST is not known. In September 1995, the tank was removed, and J. A. Jones Environmental Services Company completed a tank closure assessment. During the UST removal, the tank was reported to be intact and 3 cubic yards of soil were present in the UST, indicating that the tank was previously abandoned-in-place. Organic vapor analyzer (OVA) readings performed during the tank closure indicated no evidence of soil contamination outside the tank. However, a composite soil sample from the sand used to fill the tank indicated the presence of petroleum compounds. This sand was stockpiled and disposed off site. The soil excavated for tank removal was returned to the excavation along with additional clean backfill to bring the excavation to grade. During the tank removal, groundwater samples were not collected. The Tank Closure Report recommended "No Further Action" for UST Number 127E, since no evidence of soil contamination was found outside the tank and the tank appeared to have been previously abandoned-in-place.

SOUTHNAVFACENGCOM contracted TtNUS to screen each PCA site for possible soil and groundwater contamination. To accomplish this, TtNUS was to install one soil boring near the center of the previous

Mr. Wayne Hansel Naval Facilities Engineering Command June 28, 2002 – Page 2

tank location. Figures showing the PCA Site Plans were obtained from the station and were used in the planning documents.

The activities completed by TtNUS and the results are detailed below.

Field Screening Activities

On December 19, 2001, TtNUS mobilized to PCA 19 (Building 127E) for the field screening activities. Originally the field screening activities were to consist of soil and groundwater sample collection via direct-push technology (DPT). However, during utility clearance activities on December 11, 2001, Public Works Center (PWC) requested that TtNUS perform media sampling via hand-auger due to the sensitivity of the site. Adjacent to Building 127E is a 10-inch water main providing the water plant and Naval Air Station (NAS) Jacksonville with potable water. During field screening activities, one soil boring (JAX-19-SB01) was installed at PCA 19 via hand-auger to a depth of 8 ft below land surface (bls). The location of PCA 19 with surrounding features, former tank location, and the location of the soil boring is indicated on Figure 2.

Site Lithology

The site is underlain by a layer of brown fine silty sand from the surface to 1 ft bls. Light brown sand begins at 1 ft bls and continues to a depth of 4 ft bls. At 4 ft bls, a brown silty sand was encountered and continued to the boring termination depth of approximately 8 ft bls.

Soil Vapor Analysis

The potential for petroleum impacted soil in the vadose zone was assessed through soil headspace analysis. OVA headspace analysis was conducted using a flame ionization detector (FID). The soil vapor analysis was performed according to the head space method prescribed in Chapter 62-770.200(2), Florida Administrative Code (FAC). Soil samples were collected at 2-ft intervals to the water table, which was encountered at 5 ft bls. The results of the soil vapor screening, presented in Table 1, indicated soil at 4 ft bls contained hydrocarbon vapors above 50 parts per million (ppm). For diesel fuel sites, soils exhibiting an OVA response of greater than 50 ppm are considered "excessively contaminated" as defined by Chapter 62-770.200, FAC.

Soil Sampling Results

Based on the results of the soil headspace analyses, one soil sample [JAX-19-SB-1 (4)] was collected at 4 ft bls. The soil sample was placed on ice; shipped to Accutest Laboratories in Orlando, Florida; and analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8021B, polynuclear aromatic hydrocarbons (PAHs) by USEPA Method 8310, and total recoverable petroleum hydrocarbons (TRPH) by Florida Petroleum Range Organics (FL-PRO). Results of the laboratory analysis indicated the presence of petroleum compounds; however, no constituents were detected above Chapter 62-770, FAC, Soil Cleanup Target Levels (SCTLs). A summary of detected constituents is presented in Table 2. The complete set of analytical results is presented in Attachment A.

Groundwater Sampling Results

For groundwater sample collection, soil boring JAX-19-SB1 was converted to a temporary monitoring well. For the installation of the temporary monitoring well, the soil boring was advanced to 8 ft bls with the hand auger, and a ¾ inch polyvinyl chloride (PVC) 0.01 inch slot well screen was installed. The screen intersected the water column from 6 to 8 ft bls, and a sand pack was installed around the well screen. For groundwater recovery, Teflon® tubing was inserted into the well, and the tubing was connected to a peristaltic pump for low-flow purging and sampling. Several screen volumes were then pumped from the well in order to reduce the turbidity level and ensure a representative sample, based on visual

Mr. Wayne Hansel Naval Facilities Engineering Command June 28, 2002 – Page 3

observation. One groundwater sample [JAX-19-GW (6-8)] was collected from 6 to 8 ft bls. The groundwater sample was placed on ice; shipped to Accutest laboratories in Orlando, Florida; and analyzed for VOCs using USEPA Method 8021B, PAHs using USEPA Method 8310, TRPH using FL-PRO, and ethylene dibromide (EDB) using USEPA Method 504.1. The groundwater analytical results, presented in Table 3, indicate 9 PAH constituents that exceeded Florida Department of Environmental Protection (FDEP) Groundwater Cleanup Target Levels (GCTLs). The complete set of analytical results is presented in Attachment A.

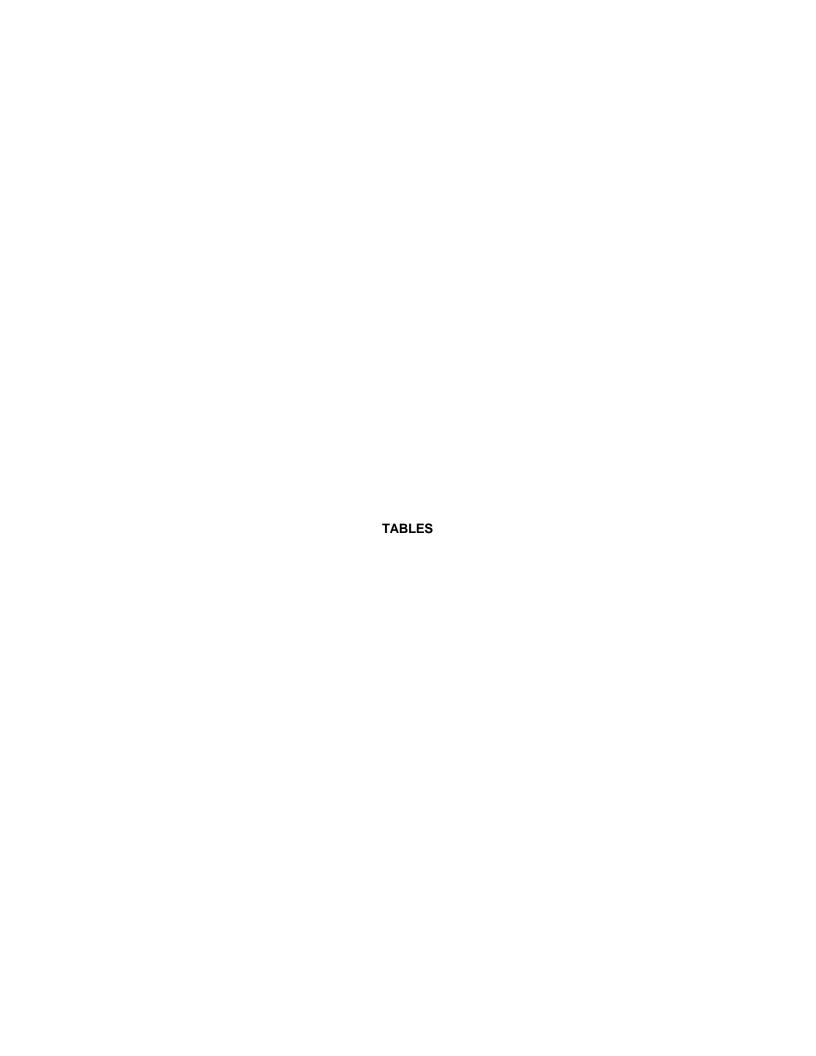
Conclusions and Recommendations

Data obtained during the field screening at PCA 19 indicated headspace readings greater than 50 ppm and "excessively contaminated" soil as defined by Chapter 62-770, FAC. However, the analytical results from the soil sample collected from the same interval indicated petroleum product constituents were not at concentrations exceeding Chapter 62-770, FAC, SCTLs. The groundwater sample collected from the temporary monitoring well indicated that dissolved concentrations of PAH constituents exceed FDEP GCTLs.

As a result of the PCA 19 site screening, TtNUS recommends that a site assessment (SA) be conducted in accordance with Chapter 62-770, FAC for PCA Site 19 at Building 127E NAS Jacksonville.

Singerely

Gregory S. Hoof] Task Order Manager (


Enclosures (3)

cc:

Jorge Caspary, FDEP (hard copy, CD) Frank Sigona, NAS Jacksonville (hard copy, CD)

D. Wroblewski (letter only)
M. Perry (unbound copy, CD)

File - CTO 192

TABLE 1 SOIL VAPOR MEASUREMENTS

PCA 19 NAVAL AIR STATION JACKSONVILLE JACKSONVILLE, FLORIDA

Soil Boring Date of		Sample Depth	Headspace Readings (ppm)					
Number	Measurement	(ft bls)	Total Organic Reading	Carbon Filtered Reading	Net Reading			
JAX-19-SB1	3/5/2001	1	0	0	0			
		3	0	0	0			
		4	2200	550	1650			

Notes:

Wet soils encountered at approximately 5 ft bls.

TABLE 2 CONFIRMATORY SOIL SAMPLING ANALYTICAL RESULTS

PCA 19 NAVAL AIR STATION JACKSONVILLE JACKSONVILLE, FLORIDA

		Leachability	PCA 19
Compound	Direct Exposure Residential ¹	Based on Groundwater	JAX-19-SB-1(4)
		Criteria ¹	12/19/2001
Sample Depth			4 ft bls
DAUG (USEDA Mothod 93	240\ (ua/ka\		
PAHs (USEPA Method 83	<u>στο) (μα/κα)</u>		
Benzo(a)pyrene	100	8000	58
Benzo(b)fluoranthene	10000	10000	36.7
Benzo(g,h,i)perylene	2300000	32000000	75.6
Benzo(k)fluoranthene	15000	25000	79 U
Indeno(1,2,3-cd)pyrene	1500	28000	44.6
FL-PRO (mg/kg)			
TRPH	340	340	15.4

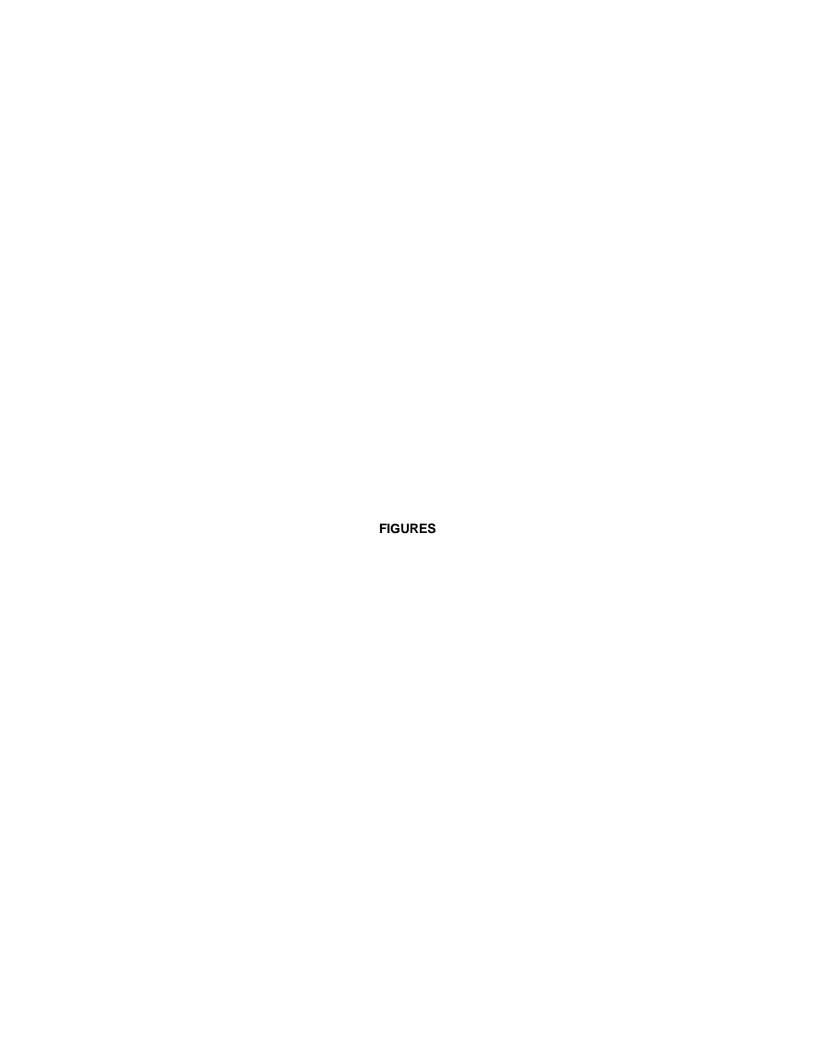
Notes:

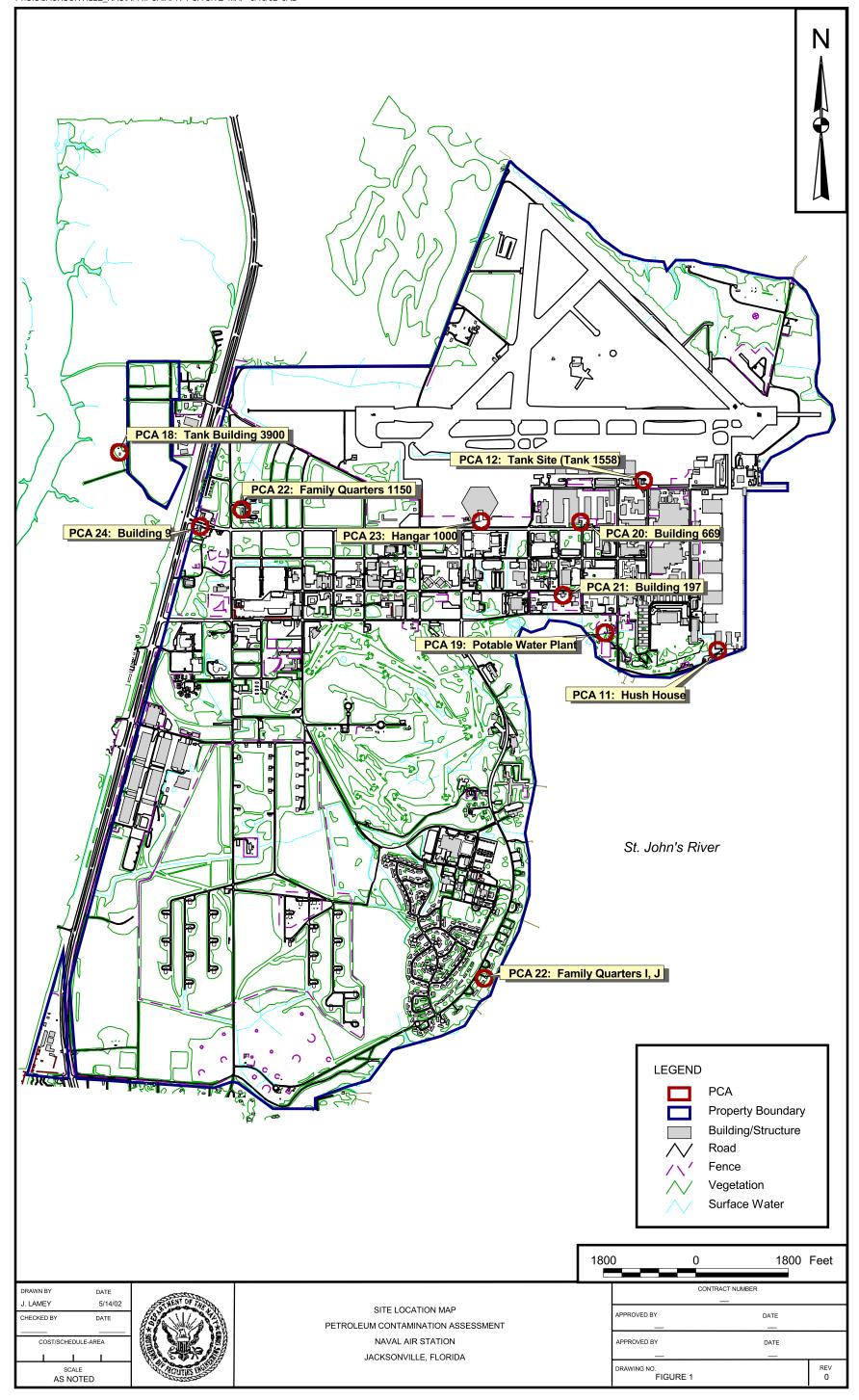
μg/kg = micrograms per kilogram

mg/kg = millligrams per kilogram

¹Chapter 62-770, FAC (April 30, 1999)

J = Estimated value less than practical quantitation level


U = Below method detection limits


TABLE 3 SUMMARY OF GROUNDWATER QUALITY

PCA SITE 19 NAVAL AIR STATION JACKSONVILLE JACKSONVILLE, FLORIDA

		PCA 19
Compound	FDEP Target Level ¹	JAX-19-GW(6-8)
		12/19/01
PAHs (USEPA Method 83		
Naphthalene	20	21.7
1-Methylnaphthalene	20	3.5
Acenaphthene	20	26.7
Anthracene	2100	13.2
Benzo(a)anthracene	0.2	5.2
Benzo(a)pyrene	0.2	6.1
Benzo(b)fluoranthene	0.2	3.4
Benzo(g,h,I)perylene	210	4.9
Benzo(k)fluoranthene	0.5	2.3
Chrysene	4.8	11.4
Dibenzo(a,h)anthracene	0.2	0.48
Fluoranthene	280	26.0
Fluorene	280	12.3
Indeno(1,2,3-cd)pyrene	0.2	3.6
Phenanthrene	210	45.5
Pyrene	210	20.6
FL-PRO (USEPA Method	8270) (mg/L)	
TRPH	5	0.405
Notes:		
¹ Chapter 62-770, FAC (Augus	t, 1999)	
U = below method detection li	mit	
μg/L = micrograms per liter		

mg/L = milligrams per liter

SOIL BORING LOCATIONS

PCA 19 - POTABLE WATER PLANT PETROLEUM CONTAMINATION ASSESSMENT

> NAVAL AIR STATION JACKSONVILLE, FLORIDA

APPROVED BY

DRAWING NO. FIGURE 2

DATE

DATE

J. LAMEY

CHECKED BY

SCALE AS NOTED

4/26/02

ATTACHMENT A ANALYTICAL RESULTS

SOIL DATA Accutest, NJ SDG: F11852

044015488050

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS:

% SOLIDS:
UNITS:
FIELD DUPLICATE OF:

JAX-12-SB1(4) 12/19/01 F11852-9 NORMAL 79.5 % UG/KG JAX-12-SB2(5) 12/19/01 F11852-8 NORMAL 80.8 % UG/KG JAX-19-SB1(4) 12/19/01 F11852-3 NORMAL 82.9 % UG/KG JAX-24-SB1(2) 12/19/01 F11852-5 NORMAL 77.3 % UG/KG

Page

	RESULT	QUAL	CODE	RESULT	OUAL							
VOLATILES	TILOULT	GOAL	CODE	RESULI	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
1,1,1-TRICHLOROETHANE	9.7	U	1	5.6	U	1	5.9	U	1	6.2	U	1
1,1,2,2-TETRACHLOROETHANE	9.7	U	1	5.6	Ü		5.9	U	ļ	6.2	U	
1,1,2-TRICHLOROETHANE	9.7	U		5.6	U		5.9	U		6.2	U	ļ. <u>.</u>
1,1-DICHLOROETHANE	9.7	U		5.6	Ū		5.9	U	 	6.2	U	
1,1-DICHLOROETHENE	31.8			16.8			5.9	U	 	6.2	U	
1,2-DICHLOROBENZENE	9.7	U		5.6	U		5.9	U .	 	6.2	U	+
1,2-DICHLOROETHANE	9.7	U		5.6	U		5.9	u		6.2	U	
1,2-DICHLOROPROPANE	9.7	U		5.6	U	 	5.9	U	 	6.2	U	
1,3-DICHLOROBENZENE	9.7	U		5.6	U	T	5.9	U	 	6.2	U	
1,4-DICHLOROBENZENE	9.7	U		5.6	U		5.9	· U	 	6.2	U	
2-CHLOROETHYL VINYL ETHER	19	U		11	U		12	U		12	U	
BENZENE	9.7	U		5.6	U		5.9	U	 	6.2	U	
BROMODICHLOROMETHANE	9.7	U		5.6	U		5.9	Ū	 	6.2	U	
BROMOFORM	9.7	U		5.6	U		5.9	U	† · · · · · · · ·	6.2	U	+
BROMOMETHANE	9.7	U.		5.6	U		5.9	U	 	6.2	Ū	
CARBON TETRACHLORIDE	9.7	U		5.6	U		5.9	U	†	6.2	U	
CHLOROBENZENE	9.7	U		5.6	U		5.9	U		6.2	U	
CHLORODIBROMOMETHANE	9.7	U		5.6	U	1.	5.9	U		6.2	U	
CHLOROETHANE	9.7	U		5.6	U		5.9	U		6.2	U	
CHLOROFORM	9.7	U		5.6	U		5.9	U		6.2	υ	
CHLOROMETHANE	9.7	U		5.6	U		5.9	U		6.2	U	
CIS-1,2-DICHLOROETHENE	9.7	U		5.6	U		5.9	U		6.2	Ū	
CIS-1.3-DICHLOROPROPENE	9.7	U		5.6	Ū		5.9	U		6.2	U	
DICHLORODIFLUOROMETHANE	9.7	U		5.6	U		5.9	U		6.2	U	
ETHYLBENZENE	9.7	U		5.6	U		5.9	U	· · · · · · · · · · · · · · · · · · ·	6.2	U	
METHYL TERT-BUTYL ETHER	9.7	U		5.6	U		5.9	U		6.2	U	
METHYLENE CHLORIDE	19	U		11	U	1	12	U		12	U	
TETRACHLOROETHENE	9.7	U		5.6	U		5.9	U		6.2	U	1
TOLUENE	9.7	U	T	5.6	U		5.9	U	1	6.2	Ü	
TOTAL XYLENES	29	U		17	U		18	U		19	U	
TRANS-1,2-DICHLOROETHENE	9.7	U	· ·	5.6	U		5.9	Ų	1	6.2	U	
TRANS-1,3-DICHLOROPROPENE	9.7	U		5.6	U		5.9	U		6.2	U	
SOV DEC DRE				•		•	1			1		

SOV_RES.DBF

01/25/02

1

SOIL DATA Accutest, NJ

SDG: F11852

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE:

FIELD DUPLICATE OF:

% SOLIDS: UNITS:

JAX-12-SB1(4) 12/19/01 F11852-9 NORMAL 79.5 % UG/KG

JAX-12-SB2(5) 12/19/01 F11852-8 NORMAL 80.8 % UG/KG

JAX-19-SB1(4) 12/19/01 F11852-3 NORMAL 82.9 % UG/KG

JAX-24-SB1(2) 12/19/01 F11852-5 **NORMAL** 77.3 % UG/KG

Page

2

RESULT QUAL CODERESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE **VOLATILES** TRICHLOROETHENE 9.7 U ·· U 5.6 5.9 U 6.2 U TRICHLOROFLUOROMETHANE 9.7 U 5.6 U 5.9 Ū 6.2 U 9.7 VINYL CHLORIDE U 5.6 U 5.9 Ū 6.2 U

SOV_RES.DBF

01/25/02

SOIL DATA Accutest, NJ SDG: F11852

Page

1

SAMPLE NUMBER:	
SAMPLE DATE:	
LABORATORY ID:	
QC_TYPE:	
% SOLIDS:	
UNITS:	

FIELD DUPLICATE OF:

JAX-12-SB1(4) 12/19/01 F11852-9 NORMAL 79.5 % UG/KG JAX-12-SB2(5) 12/19/01 F11852-8 NORMAL 80.8 % UG/KG

JAX-19-SB1(4) 12/19/01 F11852-3 NORMAL 82.9 % UG/KG JAX-24-SB1(2) 12/19/01 F11852-5 NORMAL 77.3 % UG/KG

	DEOLU T											
POLYNUCLEAR AROMATIC HYDROCARBONS	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
			ı									
1-METHYLNAPHTHALENE	420	U		410	U		400	U		420	U	1
2-METHYLNAPHTHALENE	420	U		410	υ		400	U		420	U	
ACENAPHTHENE	840	U		830	U		790	U	<u> </u>	850	U	+
ACENAPHTHYLENE	840	U		830	U	<u> </u>	790	U	+	850		+
ANTHRACENE	420	U		410	U		400	U		420	Ū	
BENZO(A)ANTHRACENE	420	U		410	Ü		400	U	 	420	- ŭ	+
BENZO(A)PYRENE	84	· U		83	U		58	J	P	85	U	+
BENZO(B)FLUORANTHENE	84	U		83	U		36.7	J	P	85	U	+
BENZO(G,H,I)PERYLENE	84	U		83	U		75.6	J	Р	85	Ū	+
BENZO(K)FLUORANTHENE	84	U		83	U		79	· U		85	Ü	+
CHRYSENE	420	U		410	U		400	U		420	U	
DIBENZO(A,H)ANTHRACENE	84	U		83	U		79	U		85	U .	
FLUORANTHENE	420	U		410	U		400	U		420	U	
FLUORENE	420	U	•	410	U		400	U		420	U	
INDENO(1,2,3-CD)PYRENE	84	U		83	U		44.6	J	Р	85	U	
NAPHTHALENE	420	υ		410	U		400	U	-	420	U	
PHENANTHRENE	420	U		410	U		400	U		420	U	
PYRENE	420	U		410	· U		400	U		420	U	

SOIL DATA Accutest, NJ SDG: F11852

50G: F11652

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE:

% SOLIDS:

FIELD DUPLICATE OF:

JAX-12-SB1(4) 12/19/01 F11852-9 NORMAL 79.5 % MG/KG JAX-12-SB2(5) 12/19/01 F11852-8 NORMAL 80.8 % MG/KG JAX-19-SB1(4) 12/19/01 F11852-3 NORMAL 82.9 % MG/KG

JAX-24-SB1(2) 12/19/01 F11852-5 NORMAL 77.3 % MG/KG

Page

RESULT QUAL CODERESULT QUAL CODE RESULT CODE RESULT QUAL QUAL CODE PETROLEUM HYDROCARBONS TOTAL PETROLEUM HYDROCARBONS 10 U 9.54 Ρ 15.4 13.5

SOT_RES.DBF

01/25/02

WATER DATA Accutest, NJ SDG: F11852

‡

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE:

% SOLIDS:

UNITS:

12/19/01 F11852-7 NORMAL 0.0 % UG/L

JAX-12-GW1(4-9)

JAX-12-GW2(5-10) 12/19/01 F11852-6 NORMAL 0.0 % UG/L JAX-19-GW(3-7) 12/19/01 F11852-4 NORMAL 0.0 % UG/L JAX-19-GW(6-8) 12/19/01 F11852-1 NORMAL 0.0 %

Page

UG/L FIELD DUPLICATE OF: RESULT QUAL CODERESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE **VOLATILES** 1,1,1-TRICHLOROETHANE 1 U U U U 1,1,2,2-TETRACHLOROETHANE 1 Ū U υ υ 1,1,2-TRICHLOROETHANE 1 u U Ū U 1,1-DICHLOROETHANE 1 Ū 0.66 P U U 1,1-DICHLOROETHENE 1.1 2.1 Ū U 1,2-DIBROMOETHANE 0.02 U 0.02 U 0.02 Ū 0.02 U 1,2-DICHLOROBENZENE 1 u u U IJ 1,2-DICHLOROETHANE 0.73 Р 1.3 Ū U 1,2-DICHLOROPROPANE 1 U U U U U 1,3-DICHLOROBENZENE 1 u U U 1,4-DICHLOROBENZENE υ U U U U 1 2-CHLOROETHYL VINYL ETHER U U U BENZENE 1 11 U U **BROMODICHLOROMETHANE** 1 U U U U BROMOFORM 1 U U U U **BROMOMETHANE** 1 U U U U 1 U U CARBON TETRACHLORIDE U υ 1 u U CHLOROBENZENE u U U U **CHLORODIBROMOMETHANE** 1 U U U U U 1 U CHLOROETHANE U U Ū 1 U CHLOROFORM U U U 1 U **CHLOROMETHANE** 6.2 18.5 U U CIS-1,2-DICHLOROETHENE 1 U U U U **CIS-1.3-DICHLOROPROPENE** U U Ū 1 U **DICHLORODIFLUOROMETHANE** 1 U U· U U **ETHYLBENZENE** U 1 U U U METHYL TERT-BUTYL ETHER 5 U U U METHYLENE CHLORIDE U U U Ü **TETRACHLOROETHENE** 1 U U U 1 TOLUENE U 3 U 3 U 3 U **TOTAL XYLENES** 3 U 0.54 Р 1.9 11 U TRANS-1,2-DICHLOROETHENE

WAV_RES.DBF

01/10/02

WATER DATA Accutest, NJ

SDG: F11852

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS:

FIELD DUPLICATE OF:

UNITS:

JAX-12-GW1(4-9) 12/19/01 F11852-7 NORMAL 0.0 % UG/L JAX-12-GW2(5-10) 12/19/01 F11852-6 NORMAL 0.0 % UG/L JAX-19-GW(3-7) 12/19/01 F11852-4 NORMAL 0.0 % UG/L JAX-19-GW(6-8) 12/19/01 F11852-1 NORMAL 0.0 % UG/L

Page

2

RESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE RESULT QUAL CODE **VOLATILES** 1 U U U TRANS-1,3-DICHLOROPROPENE U 8.2 4.6 U U TRICHLOROETHENE U 1 U U TRICHLOROFLUOROMETHANE U 1 υ υ U υ VINYL CHLORIDE

WAV_RES.DBF

01/10/02

WATER DATA Accutest, NJ SDG: F11852

Page

1

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

JAX-12-GW1(4-9) 12/19/01 F11852-7 NORMAL 0.0 % UG/L JAX-12-GW2(5-10) 12/19/01 F11852-6 NORMAL 0.0 % UG/L

JAX-19-GW(3-7) 12/19/01 F11852-4 NORMAL 0.0 % UG/L JAX-19-GW(6-8) 12/19/01 F11852-1 NORMAL 0.0 % UG/L

	RESULT	QUAL	CODE	RESULT	QUAL	0005	DE0111 T					
POLYNUCLEAR AROMATIC HYDROCARBONS		<u> </u>	OODL	TILOULI	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE
1-METHYLNAPHTHALENE	2	U	1	2.2	U	1	2.2	U	1	3.5		l p
2-METHYLNAPHTHALENE	2	U		2.2	U		2.2	u		8.4	U	+
ACENAPHTHENE	4	U		4.4	U		4.4	Ū	<u> </u>	26.7	<u> </u>	
ACENAPHTHYLENE	4	U		4.4	U	—	4.4	U.	 	8.4	U	+
ANTHRACENE	2	U		2.2	Ū		2.2	. U	1	13.2		+
BENZO(A)ANTHRACENE	0.2	U		0.22	Ü		0.22	U		5.2		+
BENZO(A)PYRENE	0.2	U		0.22	U		0.22	U	+	6.1		+
BENZO(B)FLUORANTHENE	0.2	U		0.22	U		0.22	U	 	3.4	*	+
BENZO(G,H,I)PERYLENE	0.2	Ų		0.22	U		0.22	U		4.9	 	
BENZO(K)FLUORANTHENE	0.2	U		0.22	U		0.22	U	 	2.3		+
CHRYSENE	2	U		2.2	U		2.2	U		11.4		-
DIBENZO(A,H)ANTHRACENE	0.2	Ų		0.22	U		0.22	U		0.48		+
FLUORANTHENE	2	U		2.2	U		2.2	U	+	26		+
FLUORENE	2	U		2.2	Ū	<u> </u>	2.2	U		12.3		+
INDENO(1,2,3-CD)PYRENE	0.2	U		0.22	U	T	0.22	U	1	3.6		+
NAPHTHALENE	2	U		2.2	U		2.2	U		21.7		
PHENANTHRENE	2	U		2.2	U		2.2	U		45.5		
PYRENE	2	U		2.2	U		2.2	U		20.6	*	

WATER DATA Accutest, NJ SDG: F11852

Page

SAMPLE NUMBER: SAMPLE DATE: LABORATORY ID: QC_TYPE: % SOLIDS: UNITS:

FIELD DUPLICATE OF:

JAX-12-GW1(4-9) 12/19/01 F11852-7 NORMAL 0.0 % MG/L JAX-12-GW2(5-10) 12/19/01 F11852-6 NORMAL 0.0 % MG/L JAX-19-GW(3-7) 12/19/01 F11852-4 NORMAL 0.0 % MG/L

JAX-19-GW(6-8) 12/19/01 F11852-1 NORMAL 0.0 % MG/L

The state of the s												
	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE	RESULT	QUAL	CODE

TOTAL PETROLEUM HYDROCARBONS	0.28	U		0.28	U	1	0.28	U		0.405		1
				 								

Client Sample ID: JAX-19-GW(6-8)

File ID

DD04364.D

1,2-Dibromoethane

Lab Sample ID: Matrix:

F11852-1

AQ - Ground Water EPA 504.1 EPA 504

DF

1

Date Sampled: 12/19/01 Date Received: 12/20/01

Method:

Percent Solids: n/a

Project:

NAS JAX- N2872 KJ0050115

Prep Batch **Analytical Batch Prep Date** Analyzed By GDD161 SKW 12/21/01 OP4425 12/21/01

Run #1 Run #2

106-93-4

Compound CAS No.

Result

RLUnits Q

ND

0.020ug/l

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: Lab Sample ID: Matrix: Method: Project:	JAX-19-GW(6-8 F11852-1 AQ - Ground W SW846 8021B NAS JAX- N287	ater			led: 12/19/01 ved: 12/20/01 ids: n/a	
File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch

Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	QR008020.D	1	12/28/01	RA	n/a	n/a	GQR342
Run #2							

VOA 8021 List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
110-75-8	2-Chloroethylvinyl ether	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

	Method: EPA 8310		ater			led: 12/19/01 ved: 12/20/01 ids: n/a	
D.,, #1	File ID	DF 1	Analyzed	By MRE	Prep Date 12/24/01	Prep Batch OP4434	Analytical Batcl GAA437

Kuli #2 AA000010.D E 01/01/02 IIII E	Run #1 Run #2 ª	File ID AA009852.D AA009876.D	DF 1 2	Analyzed 12/31/01 01/01/02	By MRE MRE	Prep Date 12/24/01 12/24/01	Prep Batch OP4434 OP4434	Analytical Batch GAA437 GAA438	
--------------------------------------	--------------------	-------------------------------------	--------------	----------------------------------	------------------	-----------------------------------	--------------------------------	--------------------------------------	--

Polynuclear Aromatic Hydrocarbons

CAS No.	Compound	Result	RL	Units Q
83-32-9	Acenaphthene	26.7 b	8.4	ug/l
208-96-8	Acenaphthylene	ND b	8.4	ug/l
120-12-7	Anthracene	13.2	2.2	ug/l
56-55-3	Benzo(a)anthracene	5.2 b	0.42	ug/l
50-32-8	Benzo(a)pyrene	6.1 b	0.42	ug/l
205-99-2	Benzo(b)fluoranthene	3.4 b	0.42	ug/l
191-24-2	Benzo(g,h,i)perylene	4.9 ^b	0.42	ug/l
207-08-9	Benzo(k)fluoranthene	2.3 b	0.42	ug/l
218-01-9	Chrysene	11.4 b	4.2	ug/l
53-70-3	Dibenzo(a,h)anthracene	0.48 b	0.42	ug/l
206-44-0	Fluoranthene	26.0 b	4.2	ug/l
86-73-7	Fluorene	12.3 b	4.2	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	3.6 b	0.42	ug/l
91-20-3	Naphthalene	21.7 b	4.2	ug/l
90-12-0	1-Methylnaphthalene	3.5 b	4.2	ug/l J
91-57-6	2-Methylnaphthalene ^c	ND ^b	8.4	ug/l
85-01-8	Phenanthrene	45.5 ^b	4.2	ug/l
129-00-0	Pyrene	20.6 b	4.2	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1	o-Terphenyl	73%	79%	33-141%
92-94-4	p-Terphenyl	85%	97%	31-122%

⁽a) Confirmed by GC/MS.

⁽b) Result is from Run# 2

⁽c) Elevated reporting limits due to matrix interference.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client San Lab Samp Matrix: Method: Project:		F1185 AQ - FLOR	Ground Wa			Date Sample Date Receiv Percent Soli	ed: 12/20/01	
File ID Run #1 OP1902 Run #2			DF 1	F Analyzed By 12/27/01 ME		Prep Date 12/26/01	Prep Batch OP4438	Analytical Batch GOP709
CAS No. Comp		ound		Result	RL	Units Q		
	TPH (0.405		0.25	mg/l		
CAS No.	Surro	gate Re	ecoveries	Run# 1	Run# 2	Limits		
84-15-1	o-Terp	henyl		92%	92%			

ND = Not detected

RL = Reporting Limit
E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	JAX-19-SB1(4)		
Lab Sample ID:		Date Sampled:	12/19/01
Matrix:	SO - Soil	Date Received:	12/20/01
Method:	SW846 8260B	Percent Solids:	82.9

Project: NAS JAX- N2872 KJ0050115

Run #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	H014904.D	1	12/31/01	KW	n/a	n/a	VH478

VOA 8021 List

CAS No.	Compound	Result	RL	Units Q
71-43-2	Benzene	ND	5.9	ug/kg
75-27-4	Bromodichloromethane	ND	5.9	ug/kg
75-25-2	Bromoform	ND	5.9	ug/kg
108-90-7	Chlorobenzene	ND	5.9	ug/kg
75-00-3	Chloroethane	ND	5.9	ug/kg
67-66-3	Chloroform	ND	5.9	ug/kg
110-75-8	2-Chloroethyl vinyl ether	ND	12	ug/kg
56-23-5	Carbon tetrachloride	ND	5.9	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.9	ug/kg
75-35-4	1,1-Dichloroethylene	ND	5.9	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.9	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.9	ug/kg
124-48-1	Dibromochloromethane	ND	5.9	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.9	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	5.9	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.9	ug/kg
541-73-1	m-Dichlorobenzene	ND	5.9	ug/kg
95-50-1	o-Dichlorobenzene	ND	5.9	ug/kg
106-46-7	p-Dichlorobenzene	ND	5.9	ug/kg
156-60-5	trans-1,2-Dichloroethylene	ND	5.9	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.9	ug/kg
100-41-4	Ethylbenzene	ND	5.9	ug/kg
74-83-9	Methyl bromide	ND	5.9	ug/kg
74-87-3	Methyl chloride	ND	5.9	ug/kg
75-09-2	Methylene chloride	ND	12	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	5.9	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.9	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.9	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.9	ug/kg
127-18-4	Tetrachloroethylene	ND	5.9	ug/kg
108-88-3	Toluene	ND	5.9	ug/kg
79-01-6	Trichloroethylene	ND	5.9	ug/kg
75-69-4	Trichlorofluoromethane	ND	5.9	ug/kg
75-01-4	Vinyl chloride	ND	5.9	ug/kg
1330-20-7	Xylene (total)	ND	18	ug/kg
	•			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sam Lab Sampl Matrix: Method: Project:	SO - S EPA 8	52-3 Soil 3310 SW8	346 3550B 2 KJ0050115	J0050115 Analyzed By Prep Date Prep Batch Analytical Batc			
Run #1 ^a	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #2	EE006896.D	1	01/02/02	MRE	12/28/01	OP4455	GEE313

Polynuclear Aromatic Hydrocarbons

CAS No.	Compound	Result	RL	Units Q
83-32-9	Acenaphthene	ND	790	ug/kg
208-96-8	Acenaphthylene	ND	790	ug/kg
120-12-7	Anthracene	ND	400	ug/kg
56-55-3	Benzo(a)anthracene	ND	400	ug/kg
50-32-8	Benzo(a) pyrene	58.0	79	ug/kg J
205-99-2	Benzo(b)fluoranthene	36.7	79	ug/kg J
191-24-2	Benzo(g,h,i)perylene	75.6	79	ug/kg J
207-08-9	Benzo(k)fluoranthene	ND	79	ug/kg
218-01-9	Chrysene	ND	400	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	79	ug/kg
206-44-0	Fluoranthene	ND	400	ug/kg
86-73-7	Fluorene	ND	400	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	44.6	79	ug/kg J
91-20-3	Naphthalene	ND	400	ug/kg
90-12-0	1-Methylnaphthalene	ND	400	ug/kg
91-57-6	2-Methylnaphthalene	ND	400	ug/kg
85-01-8	Phenanthrene	ND	400	ug/kg
129-00-0	Pyrene	ND	400	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
84-15-1	o-Terphenyl	88%		37-158%
92-94-4	p-Terphenyl	99%		59-149%

⁽a) All hits confirmed by spectral match using a diode array detector.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Samp Lab Samp Matrix: Method: Project:	ole ID: F11 SO FL	K-19-SB1(4) 852-3 - Soil ORIDA-PRO S JAX- N2872	SW846 3550B 2 KJ0050115		Date Sample Date Receive Percent Soli	ed: 12/20/01	
Run #1 Run #2	File ID OP19104.D	DF 1	Analyzed 12/31/01	By ME	Prep Date 12/31/01	Prep Batch OP4463	Analytical Batch GOP711
CAS No.	Compound	ı	Result	RL	Units Q		
	TPH (C8-C	240)	15.4	10	mg/kg		
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	Limits		
84-15-1	o-Terpheny	'l	95%	95%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

TE TETRA TECH NUS, INC.

CHAIN OF CUSTODY

| NUMBER 13/901-1

	57-0		akab/		COMMENTS									TIME	TIME	TIME	3/89
ID CONTACT:	, Romo		0		THE RECEIVE									PA EDG!	DATE	DATE	-
A CC UTF ST	4435 VINGLAND	CITY, STATE DECANDO, FC	11/16/18	1005 LA	87.3				3 (/						COPY)
A C C	ADDRESS イタン野	CITY, STATE	Sivin Chave In Ca		California de la constante de	-								The state of the s			PINK (FILE COPY)
400	NUMBER	~	PE GLASS (G)	H	S. C.	2 2	2 2							高を含み	VED BY	VED BY	
PROJECT MANAGER AND PHONE NUMBER CREC ROOF (404) 281-0400	J. FERALONE LEADER AND PHONE NUMBER	127152	CONTAINER TYPE PLASTIC (P) or GLASS (G)	PRESERVATIVE USED	SEMMENTE	3	8							1. RECEIVED BY		3. RECEIVED BY	YELLOW (FIELD COPY)
NAGER AND	TIONS LEAD CANTI	SIL NUMBER			ио. ОF СОИТАІИЕRS	5	c'		4					T/M330	TIME	TIME	YELLOW (F
PROJECT MA	J. FEL	CARRIER/WAYBILL NUMBER		vaga green Palma, isa a	(5) 8AR9 (2) (3) 4MOO	GW G	$\mathcal{G}_{\mathcal{M}}$		50 6	1				PATE/131	DATE/	DATE	
IS STENAME:	MASJAX)		\ \ 	. ☑ 48 hr. ☐ 72 hr. ☐ 7 day ☐ 14 day		JAX -19-EW (6-8)	22 - GW (10-13)	7,500	Jox -14-361(4)	Trat 221				Ger South	DBY W	DBY	WHITE (ACCOMPANIES SAMPLE)
PROJECT NO: 1/2/8/12/8/30	SAMPLERS (SIGN			STANDARD TAT M RUSH TAT C C 24 hr. C 48 hr.	DATE 200/	14 0930	ShCI K		5060					1. RELINQUIGHEGEN	2. RELINQUISMED	3. RELINQUÍSHED BY	COMMENTS DISTRIBUTION: